Downstream synthetic route of 2-Methylpiperazine

As the paragraph descriping shows that 109-07-9 is playing an increasingly important role.

109-07-9, 2-Methylpiperazine is a piperazines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Preparation of Benzoylpiperazine XXX To a stirred solution of 2-methylpiperazine (10.0 g, 0.1 mol) in dry CH2Cl2 (500 ml) under argon was added a solution of 1.0 M Me2AlCl or Et2AlCl in hexanes (100 ml, 0.1 mmol) and methyl benzoate (12.4 ml, 0.1 mmol) at room temperature. The reaction mixture was then stirred for 2 days before 2N NaOH (200 ml) was added. Aqueous layer was extracted with EtOAc (3*100 ml). The combined organic layer was dried over MgSO4 and concentration of solution provided 20.0 g of crude product (98%), with was pure enough for the further reactions., 109-07-9

As the paragraph descriping shows that 109-07-9 is playing an increasingly important role.

Reference:
Patent; Bristol-Myers Squibb Company; US6469006; (2002); B1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Some tips on 109-07-9

109-07-9 2-Methylpiperazine 66057, apiperazines compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.109-07-9,2-Methylpiperazine,as a common compound, the synthetic route is as follows.

Example 15 A 2-liter four-neck flask with a thermometer, condenser and stirrer was charged with 200.4 g (= 2.00 moles) of racemic 2-methylpiperazine, 280.0 g of water and 96.0 g of methanol for perfect dissolution. Then, 300.4 g of 50 wt% D-tartaric acid aqueous solution (150.2 g = 1.000 mole of D-tartaric acid) was added at 40 to 45C, and the temperature was further raised up to 72C, being followed by addition of 120.2 g (= 2.00 moles) of acetic acid and aging at the temperature for 2 hours. The solvent composition was water/methanol = 81.8/18.2 (ratio by weight), and the amount of the solvent based on the racemic 2-methylpiperazine was 2.63 times by weight. Then, cooling was carried out down to 25C, taking 12 hours, and precipitated crystals were collected by filtration. The obtained crystals were dried in vacuum, to obtain 214.8 g (= 0.858 mole) of a diastereomer salt. The optical purity of the salt was 93.9%ee, and the yield of the S-isomer in the obtained salt based on the amount of the S-isomer in the supplied (+/-)-2-methylpiperazine was 83.2%. Subsequently, a 1-liter flask was charged with 380 g of water, and the obtained 214.8 g of crystals {pure (S)-2-methylpiperazine content = 83.4 g} were added. Perfect dissolution was achieved at 80 to 85C, and cooling was carried out down to 15C, taking 12 hours. Precipitated crystals were collected by filtration and dried in vacuum to obtain 187.2 g of a salt. Its optical purity was 99.4%ee, and the yield of the S-isomer in the obtained salt based on the amount of (S)-2-methylpiperazine in the supplied crystals was 89.8%. A 500 ml four-neck flask with a thermometer, condenser and stirrer was charged with 150 g of water, and 185.0 g of (S)-2-methylpiperazine D-tartaric acid salt (= 0.739 mole, optical purity of 2-methylpiperazine = 99.4%ee) obtained before and 69.1 g (= 0.863 mole) of 95% pure calcium hydroxide were added. The slurry was heated up to 70 to 80C, and stirred for 3 hours, then being cooled to room temperature. Subsequently, the non-dissolved salt was filtered away, to obtain the mother liquor. The mother liquor was GC-analyzed, and as a result, it was found that 68.7 g (= 0.686 mole) of optically active 2-methylpiperazine existed in the mother liquor (yield 92.8%). Furthermore, as a result of HPLC analysis, the optical purity of (S)-2-methylpiperazine was 99.4%ee. Then, water was distilled away till about 50 wt% was reached, being followed by addition of 1-butanol, and azeotropic dehydration was carried out till the water content of the system became less than 1 wt%. In a 1-liter four-neck flask, 50.0 g of the (S)-2-methylpiperazine (= 0.499 mole, optical purity 99.4%ee) obtained before was placed, and 440 g of 1-butanol was added for dissolution. The solution was cooled down to 0C, and 92.5 g (= 0.534 mole) of benzyl chlorocarbonate was added dropwise with the liquid temperature kept in a range from 0 to 8C. Then, stirring was carried out at 0C for 2 hours, and 300 g of 1-butanol was distilled away under reduced pressure, being followed by addition of 300 g of water. Subsequently 35% hydrochloric acid water was used to adjust the pH to 1.0, and 220 g of toluene was added, being followed by stirring for 30 minutes. The upper layer was then removed, and the same amount of toluene was added again. The same operation was repeated to carry out washing operation. Subsequently 48% sodium hydroxide aqueous solution was used to adjust the pH of the reaction solution to 12.1. In this case, white turbidity occurred due to liberated 1-benzyloxycarbonyl-3-methylpiperazine. To the white turbid solution, 400 g of toluene was added, and stirring water carried out for 30 minutes. The lower layer was then removed, and the upper layer was concentrated under reduced pressure at 60 to 70C in temperature. Subsequently toluene was distilled away to obtain 88.5 g of a concentrate. Eighty five point .zero grams of the obtained 1-benzyoxycarbonyl-3-methylpiperazine was fed to a thin film distiller (heating surface area 0.02 m2) using a liquid feed pump at 0.6 liter/h. The temperature of the heating medium was 150C, and a low-boiling component was cut at a vacuum degree of 360 Pa, to obtain 82.8 g of a liquid remaining in the distiller. The liquid remaining in the distiller was again fed to the same thin film distiller at 0.6 liter/h using a liquid feed pump. The temperature of the heating medium was 220C, and product distillation was carried out at 87 to 116 Pa in vacuum degree, to obtain 76.1 g of a distillate. The obtained compound was analyzed. As a result, the intended 1-benzyloxycarbonyl-3-methylpiperazine accounted for 99.4 liquid chromatography area %. The impurities showed 0.25 liquid chromatography area % for benzyl alcohol, 0.03 liquid chromatography area % for 1-benzyl-4-benzyloxycarbonyl-2-methylpiperazine, 0.02 liquid chromatography area % for 1-benzyl-2-methylpiperazine and no detection for 1,4-dibenzyloxycarbonyl-2-methylpiperazine (and 0.08 area % for sol…, 109-07-9

109-07-9 2-Methylpiperazine 66057, apiperazines compound, is more and more widely used in various fields.

Reference:
Patent; Toray Fine Chemicals Co., Ltd.; EP1548010; (2005); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Some tips on 2-Methylpiperazine

109-07-9 2-Methylpiperazine 66057, apiperazines compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.109-07-9,2-Methylpiperazine,as a common compound, the synthetic route is as follows.

1-(t-Butoxycarbonyl)-3-methylpiperazine To a cold (-5 C.) solution of 2-methylpiperazine (5.00 g, 0.05 mole) in 200 mL of CH2 Cl2 under Ar was added a solution of di-t-butyl dicarbonate (10.9 g, 0.05 mole) in 100 mL of CH2 Cl2 over 1 h. The resulting mixture was stirred at -5 C. for 1 h and then at r.t. for 2 h. The solution was then washed (H2 O), dried (Na2 SO4) and evaporated to give an oil which was chromatographed (SiO2 /ethyl acetate then ethyl acetate-MeOH-NH4 OH 10:1:0.1) to give the product (4.30 g, 43%) as an oil. This material was used without further purification: 1 H nmr (200 MHz, CDCl3) delta 4.15-3.75 (br s, 2H), 3.0-2.6 (m, 4H), 2.47-2.35 (m, 1H), 1.48 (s, 9H), 1.08 (d, J=6.7 Hz, 3H)., 109-07-9

109-07-9 2-Methylpiperazine 66057, apiperazines compound, is more and more widely used in various fields.

Reference:
Patent; Bristol-Myers Squibb Company; US5434154; (1995); A;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

New learning discoveries about 109-07-9

As the paragraph descriping shows that 109-07-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.109-07-9,2-Methylpiperazine,as a common compound, the synthetic route is as follows.

Example 28 2-(Phenoxy)ethyl 3-(3-methyl-1-piperazinyl)-2-pyrazinyl Ether The title compound was prepared according to the procedure described in Example 4, Step 2, starting from 2-chloro-3-(2-phenoxyethoxy)pyrazine (150 mg, 0.54 mmol; from Example 1, Step 1) and 2-methylpiperazine (250 mg, 2.5 mmol) with the exception that a final extraction step between EtOAc and 5% aqueous NaOH was carried out. This gave 138 mg (73%) of the title product. Anal. (C17H22N4O2) C, H, N. *Prepared according to the procedure described in Example 4, Step 1., 109-07-9

As the paragraph descriping shows that 109-07-9 is playing an increasingly important role.

Reference:
Patent; Biovitrum AB; US6465467; (2002); B1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Some tips on 109-07-9

109-07-9, 109-07-9 2-Methylpiperazine 66057, apiperazines compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.109-07-9,2-Methylpiperazine,as a common compound, the synthetic route is as follows.

Example 13 N-[6-(4-Allyl-3-methylpiperazin-1-yl)pyridin-3-yl]-4-isopropylbenzenesulfonamide hydrochloride 13.1 3-Methyl-1-(5-nitropyridin-2-yl)piperazine 872 mg (6.31 mmol) of potassium carbonate were added to a solution of 500 mg (3.15 mmol) of 2-chloro-5-nitropyridine in 7 ml of dimethylformamide. After that, a solution of 350 mg (3.32 mmol) of 2-methylpiperazine in 3 ml of dimethylformamide was slowly added dropwise to the reaction mixture while cooling with ice (exothermic reaction). The reaction mixture was stirred for 1 hour while cooling with ice and then stirred overnight at room temperature. After the solvent had been evaporated to dryness, the residue was taken up in water and this mixture was extracted three times with diethyl ether. The combined organic phases were dried over sodium sulfate, filtered and evaporated to dryness, with 3-methyl-1-(5-nitropyridin-2-yl)piperazine (Yield: 650 mg, 89% of theory) being obtained. 1H-NMR (500 MHz, CDCl3): delta [ppm] 9.0 (s, 1H); 8.2 (d, 1H); 6.6 (d, 1H), 4.4 (m, 2H); 3.2 (m, 1H); 3.1 (m, 1H); 2.9 (m, 2H); 2.7 (m, 1H); 1.2 (m, 3H). 13C-NMR (125 MHz, CDCl3): 160.4 (C); 146.5 (CH); 134.9 (C); 133.0 (C); 104.5 (CH); 52.2 (CH2); 50.6 (CH); 45.7 (CH2); 45.4 (CH2); 19.6 (CH3).

109-07-9, 109-07-9 2-Methylpiperazine 66057, apiperazines compound, is more and more widely used in various fields.

Reference:
Patent; Abbott GmbH & Co. KG.; US2006/160809; (2006); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

New learning discoveries about 2-Methylpiperazine

109-07-9, As the paragraph descriping shows that 109-07-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.109-07-9,2-Methylpiperazine,as a common compound, the synthetic route is as follows.

Reference Example 10 benzyl 3-methylpiperazine-1-carboxylate A 4 g portion of 2-methylpiperazine was dissolved in 40 ml of dichloromethane, and 1.71 g of benzyl chloroformate was added dropwise thereto at -78 C. After 1 hour of stirring, the mixture was washed by adding water and dried and then the solvent was evaporated to obtain 2.0 g of the title compound.

109-07-9, As the paragraph descriping shows that 109-07-9 is playing an increasingly important role.

Reference:
Patent; Yamanouchi Pharmaceutical Co. Ltd.; US6673799; (2004); B1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Downstream synthetic route of 109-07-9

109-07-9 2-Methylpiperazine 66057, apiperazines compound, is more and more widely used in various fields.

109-07-9, 2-Methylpiperazine is a piperazines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Thermometer, vacuum stirrer, four-necked flask 2L equipped with acooling tube, L- tartaric acid 270g (1.8 mol), acetic acid 108 g (1.8 mol), water 270g was added,was completely dissolved. Then, (±) -2- methylpiperazine 300g (3.0 mol), water 300g wasadded, and the reaction was heated 85 ° C or more, were completely dissolved. Then cooled to6874 ° C, (R) -2- methylpiperazine and L- diastereomers tartaric was added to precipitatecrystals, allowed to 1 hour aged at that temperature. Then, over a period of 5 hours and cooled to1218 ° C, and the precipitated crystals were filtered, diastereomeric salt 440g of wet biomass,liquid content 22.7wtpercent, optical purity of 92.3percent e. e. , R KaradaOsamuritsu Retrieving salt to theR-isomer of charge (±) in the 2-methyl piperazine, was 88percent. Then, charged 644g of water four-necked flask 2L, the resulting crystals 440g ((R) -2-methylpiperazine pure content = 132 g) were added. Furthermore, the addition of calciumhydroxide 162g (2.2mol), then heated to 80 ° C, and aged at that temperature for 5 hours.Cooled over a period of 2 hours up to 25 ° C, was filtered off precipitated crystals to remove thewet material crystal of 586g (mainly L- tartaric acid calcium). Get the filtrate 660 g, liberated with L- tartaric acid in the filtrate (R) -2- methylpiperazine were present 130 g. Thermometer, vacuum stirrer, four-necked flask 1L with a cooling tube equippedfiltrate 330g obtained in Reference Example 1 (in the filtrate of (R)-2-methyl-piperazine 65 g)was concentrated under reduced pressure, (R ) concentration of 2-methyl piperazine was distilledoff the water until the 30 percent. Then, toluene 356g was added to the concentrate, a mixedsolution was heated under normal pressure and azeotroped with water and toluene in arms 84 to87 ° C, excluding the water. Then, toluene was distilled off 212g under reduced pressure. Theconcentrate was cooled to 47 ° C, (R) -2- methylpiperazine 0.01g was added as a seed crystal toprecipitate crystals, followed by aging for 1 hour at 47 ° C. Was cooled over 5 hours 05 ° C,and aged for 2 hours at 06 ° C. The precipitated crystals were taken out by filtration underreduced pressure, vacuum drying, the crystalline body (R) -2- methylpiperazine was 45gacquired. The resulting quality of (R) -2- methylpiperazine of the crystal body, chemical purity of100percent, an optical purity of 99.5percent e. e. In and, R KaradaOsamuritsu acquisition crystals for (R) -2-methylpiperazine in charge filtrate was 69percent. 1, illustrating the steps from Reference Example 1 to Example 1. Was the first crystallizationfrom ( “1 crystallization” was described as) (described as “crystallization”) last crystallization upto six steps. Compared to the Comparative Example 2 step, short process, was able to get a goodoptically active 2-methylpiperazine of easy nature of handling. Thermometer, vacuum stirrer, four-necked flask 1L with a cooling tube equippedfiltrate 330g obtained in Reference Example 1 (in the filtrate of (R)-2-methyl-piperazine 65 g)was concentrated under reduced pressure, (R ) concentration of 2-methyl piperazine was distilledoff the water until the 30 percent. Then, cyclopentyl methyl ether 356g added to theconcentrated solution, mixed solution was heated to normal pressure and azeotroped water andcyclopentyl methyl ether at 8487 ° C, except for the water. It was then distilled off cyclopentylmethyl ether 205g under reduced pressure. The concentrate was cooled to 47 ° C, (R) -2-methylpiperazine 0.01g was added as a seed crystal to precipitate crystals, followed by aging for1 hour at 47 ° C. Was cooled over 5 hours 05 ° C, and aged for 2 hours at 06 ° C. Theprecipitated crystals were taken out by filtration under reduced pressure, vacuum drying, thecrystalline body (R) -2- methylpiperazine was 44g acquired. The resulting quality of (R) -2-methylpiperazine of the crystal body, chemical purity of 100percent, an optical purity of 99.6percent e. e. Inand, R KaradaOsamuritsu acquisition crystals for (R) -2- methylpiperazine in charge filtrate was 68percent. Thermometer, vacuum stirrer, four-necked flask 1L equipped with a Dean-Starkapparatus, 33percent (S) -2- methylpiperazine solution 300.0g ((S) -2- methylpiperazine 100.0 g,Quality: Chemistry purity 99.9percent, optical purity of 80.0percent e.e. ) Were charged. Then stirred withtoluene 586.0g (5.86wt times / (S) -2- methylpiperazine). The solution was heated under normalpressure, arms 84 to 87 ° was azeotroped with water and toluene in C, except for water only.Then, toluene was distilled off 286g under reduced pressure. The concentrate was cooled to4350 ° C, (S) -2-methylpiperazine 0.01g was added as a seed crystal to precipitate crystals,followed by aging for 1 hour at 4350 ° C. Then it cooled over 2 hours to 0 to 5 ° C, and agedfor 2 hours at 05 ° C. The precipitated crystals were taken out by filtration under reducedpressure, vacuum drying, the crystalline body (S)-2-methylpiperazine 66.8g was obtained (…, 109-07-9

109-07-9 2-Methylpiperazine 66057, apiperazines compound, is more and more widely used in various fields.

Reference:
Patent; TORAY FINE CHEMICALS COMPANY LIMITED; MORII, SEIJI; NISHIKAWA, TAKESHI; (12 pag.)JP2016/37495; (2016); A;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Downstream synthetic route of 109-07-9

109-07-9 2-Methylpiperazine 66057, apiperazines compound, is more and more widely used in various fields.

109-07-9, 2-Methylpiperazine is a piperazines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Thermometer, vacuum stirrer, four-necked flask 2L equipped with acooling tube, L- tartaric acid 270g (1.8 mol), acetic acid 108 g (1.8 mol), water 270g was added,was completely dissolved. Then, (±) -2- methylpiperazine 300g (3.0 mol), water 300g wasadded, and the reaction was heated 85 ° C or more, were completely dissolved. Then cooled to6874 ° C, (R) -2- methylpiperazine and L- diastereomers tartaric was added to precipitatecrystals, allowed to 1 hour aged at that temperature. Then, over a period of 5 hours and cooled to1218 ° C, and the precipitated crystals were filtered, diastereomeric salt 440g of wet biomass,liquid content 22.7wtpercent, optical purity of 92.3percent e. e. , R KaradaOsamuritsu Retrieving salt to theR-isomer of charge (±) in the 2-methyl piperazine, was 88percent. Then, charged 644g of water four-necked flask 2L, the resulting crystals 440g ((R) -2-methylpiperazine pure content = 132 g) were added. Furthermore, the addition of calciumhydroxide 162g (2.2mol), then heated to 80 ° C, and aged at that temperature for 5 hours.Cooled over a period of 2 hours up to 25 ° C, was filtered off precipitated crystals to remove thewet material crystal of 586g (mainly L- tartaric acid calcium). Get the filtrate 660 g, liberated with L- tartaric acid in the filtrate (R) -2- methylpiperazine were present 130 g. Thermometer, vacuum stirrer, four-necked flask 1L with a cooling tube equippedfiltrate 330g obtained in Reference Example 1 (in the filtrate of (R)-2-methyl-piperazine 65 g)was concentrated under reduced pressure, (R ) concentration of 2-methyl piperazine was distilledoff the water until the 30 percent. Then, toluene 356g was added to the concentrate, a mixedsolution was heated under normal pressure and azeotroped with water and toluene in arms 84 to87 ° C, excluding the water. Then, toluene was distilled off 212g under reduced pressure. Theconcentrate was cooled to 47 ° C, (R) -2- methylpiperazine 0.01g was added as a seed crystal toprecipitate crystals, followed by aging for 1 hour at 47 ° C. Was cooled over 5 hours 05 ° C,and aged for 2 hours at 06 ° C. The precipitated crystals were taken out by filtration underreduced pressure, vacuum drying, the crystalline body (R) -2- methylpiperazine was 45gacquired. The resulting quality of (R) -2- methylpiperazine of the crystal body, chemical purity of100percent, an optical purity of 99.5percent e. e. In and, R KaradaOsamuritsu acquisition crystals for (R) -2-methylpiperazine in charge filtrate was 69percent. 1, illustrating the steps from Reference Example 1 to Example 1. Was the first crystallizationfrom ( “1 crystallization” was described as) (described as “crystallization”) last crystallization upto six steps. Compared to the Comparative Example 2 step, short process, was able to get a goodoptically active 2-methylpiperazine of easy nature of handling. Thermometer, vacuum stirrer, four-necked flask 1L with a cooling tube equippedfiltrate 330g obtained in Reference Example 1 (in the filtrate of (R)-2-methyl-piperazine 65 g)was concentrated under reduced pressure, (R ) concentration of 2-methyl piperazine was distilledoff the water until the 30 percent. Then, cyclopentyl methyl ether 356g added to theconcentrated solution, mixed solution was heated to normal pressure and azeotroped water andcyclopentyl methyl ether at 8487 ° C, except for the water. It was then distilled off cyclopentylmethyl ether 205g under reduced pressure. The concentrate was cooled to 47 ° C, (R) -2-methylpiperazine 0.01g was added as a seed crystal to precipitate crystals, followed by aging for1 hour at 47 ° C. Was cooled over 5 hours 05 ° C, and aged for 2 hours at 06 ° C. Theprecipitated crystals were taken out by filtration under reduced pressure, vacuum drying, thecrystalline body (R) -2- methylpiperazine was 44g acquired. The resulting quality of (R) -2-methylpiperazine of the crystal body, chemical purity of 100percent, an optical purity of 99.6percent e. e. Inand, R KaradaOsamuritsu acquisition crystals for (R) -2- methylpiperazine in charge filtrate was 68percent. Thermometer, vacuum stirrer, four-necked flask 1L equipped with a Dean-Starkapparatus, 33percent (S) -2- methylpiperazine solution 300.0g ((S) -2- methylpiperazine 100.0 g,Quality: Chemistry purity 99.9percent, optical purity of 80.0percent e.e. ) Were charged. Then stirred withtoluene 586.0g (5.86wt times / (S) -2- methylpiperazine). The solution was heated under normalpressure, arms 84 to 87 ° was azeotroped with water and toluene in C, except for water only.Then, toluene was distilled off 286g under reduced pressure. The concentrate was cooled to4350 ° C, (S) -2-methylpiperazine 0.01g was added as a seed crystal to precipitate crystals,followed by aging for 1 hour at 4350 ° C. Then it cooled over 2 hours to 0 to 5 ° C, and agedfor 2 hours at 05 ° C. The precipitated crystals were taken out by filtration under reducedpressure, vacuum drying, the crystalline body (S)-2-methylpiperazine 66.8g was obtained (…, 109-07-9

109-07-9 2-Methylpiperazine 66057, apiperazines compound, is more and more widely used in various fields.

Reference:
Patent; TORAY FINE CHEMICALS COMPANY LIMITED; MORII, SEIJI; NISHIKAWA, TAKESHI; (12 pag.)JP2016/37495; (2016); A;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Analyzing the synthesis route of 109-07-9

109-07-9, The synthetic route of 109-07-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.109-07-9,2-Methylpiperazine,as a common compound, the synthetic route is as follows.

Example 24A 3-methyl-1-pyridin-2-ylpiperazine hydrobromide 2-Methylpiperazine (1.0 g, 0.01 mol, racemic mixture) and 2-bromopyridine (10 mL, 0.1 mol) were combined and heated at 120 C. for 16 hours. The reaction mixture was cooled to 23 C. and partitioned between ethyl acetate and water. The layers were separated, and the water layer was concentrated under reduced pressure. The residue was triturated with ethyl acetate, dichloromethane, and methanol to afford 460 mg (26% yield) of the title compound as an off-white solid. 1H NMR (300 MHz, DMSO-d6) delta 1.27 (d, J=6.6 Hz, 3H), 2.90 (dd, J=10.5, 14.1 Hz, 1H), 3.10 (m, 2H), 3.40 (m, 2H), 4.32 (m, 2H), 6.77 (dd, J=4.8, 6.9 Hz, 1H), 6.98 (d, J=8.1 Hz, 1H), 7.64 (m, 1H), 8.15 (m, 1H), 8.63 (bs, 1H), 8.92 (bs, 1H); MS (APCI) m/e 178 (M+H)+.

109-07-9, The synthetic route of 109-07-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Cowart, Marlon D.; Bhatia, Pramila A.; Daanen, Jerome F.; Stewart, Andrew O.; Patel, Meena V.; Kolasa, Teodozyj; Brioni, Jorge D.; Rohde, Jeffrey; US2002/169166; (2002); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics

Brief introduction of 2-Methylpiperazine

109-07-9, The synthetic route of 109-07-9 has been constantly updated, and we look forward to future research findings.

109-07-9, 2-Methylpiperazine is a piperazines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 8 In a 100 ml four-neck flask, 5.04 g (= 0.0503 mole) of racemic 2-methylpiperazine was placed, and 5.37 g of water and 45.13 g of 1-butanol were added for dissolution (water content 10.6 wt%). Furthermore, 3.99 g (= 0.0504 mole) of pyridine was added, being followed by stirring and subsequent cooling down to 0C, and 8.67 g of benzyl chlorocarbonate (= 0.0494 mole, purity by HPLC determination analysis 97.1 wt%, 0.98 molar time) was added dropwise with the liquid temperature kept in a range from 5 to 10C. Then, stirring was carried out at 0C for 2 hours. The reaction solution was analyzed, and as a result, the reaction yield of 1-benzyloxycarbonyl-3-methylpiperazine was 82.5%.

109-07-9, The synthetic route of 109-07-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Toray Fine Chemicals Co., Ltd.; EP1548010; (2005); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics