New learning discoveries about 3-(4-Methylpiperazin-1-yl)propan-1-ol

As the paragraph descriping shows that 5317-33-9 is playing an increasingly important role.

5317-33-9, 3-(4-Methylpiperazin-1-yl)propan-1-ol is a piperazines compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5317-33-9, d. 4-{6-Fluoro-7-[3-(4-methyl-piperazin-1-yl)-propoxy]-quinazolin-4-yl}-piperidine-1-carboxylic acid tert-butyl ester; A solution of 1.19M KOtBu in THF (128 muL, 152 mumol) was added dropwise with stirring over 2.5 min to a 0 C. homogeneous solution of 4-(6,7-Difluoro-quinazolin-4-yl)-piperidine-1-carboxylic acid tert-butyl ester (38.1 mg, 109 mumol), as prepared in the previous step, and 3-(4-Methyl-piperazin-1-yl)-propan-1-ol (22.4 mg, 142 mumol) in THF (170 muL). The reaction was stirred at 0 C. for 1.5 hr, and was then partitioned with DCM (2 mL) and 1M NaCl (2 mL). The aq layer was back-extracted with DCM (1×2 mL), and the combined cloudy white organic layers were dried (Na2SO4) and concentrated. The residue was purified by silica flash chromatography (1:2 hex/EtOAc/3% DMEA eluent) to yield the title compound as an off-white foam (32.6 mg, 61%). NOe experiments support the assigned regioisomer. Select 1H-NMR resonances and nOes (300 MHz, CDCl3) delta 7.73 (d, J=11.4 Hz, 1H), 7.43 (d, J=8.1 Hz, 1H), 3.46 (tt, 1H). Irradiation of the diagnostic methine proton at delta 3.46 generates an nOe to the quinazoline C5 proton at delta 7.73, but not to the quinazoline C8 proton at delta 7.43. The C5 proton has a larger coupling constant than the C8 proton, indicating fluorine substitution at C6 of the quinazoline. LC/MS (ESI): calcd mass 487.3, found 488.3 (MH)+.

As the paragraph descriping shows that 5317-33-9 is playing an increasingly important role.

Reference:
Patent; Baindur, Nand; Gaul, Michael David; Kreutter, Kevin Douglas; Baumann, Christian Andrew; Kim, Alexander J.; Xu, Guozhang; Tuman, Robert W.; Johnson, Dana L.; US2006/281772; (2006); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics