Zhang, Lingtian team published research on Journal of Medicinal Chemistry in 2022 | 103-76-4

103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, SDS of cas: 103-76-4

Piperazine is an organic compound that consists of a six-membered ring containing two nitrogen atoms at opposite positions in the ring. 103-76-4, formula is C6H14N2O, Name is N-(2-Hydroxyethyl)piperazine. Piperazine exists as small alkaline deliquescent crystals with a saline taste. SDS of cas: 103-76-4.

Zhang, Lingtian;Moccia, Marialuisa;Briggs, David C.;Bharate, Jaideep B.;Lakkaniga, Naga Rajiv;Knowles, Phillip;Yan, Wei;Tran, Phuc;Kharbanda, Anupreet;Wang, Xiuqi;Leung, Yuet-Kin;Frett, Brendan;Santoro, Massimo;McDonald, Neil Q.;Carlomagno, Francesca;Li, Hong-yu research published 《 Discovery of N-Trisubstituted Pyrimidine Derivatives as Type I RET and RET Gatekeeper Mutant Inhibitors with a Novel Kinase Binding Pose》, the research content is summarized as follows. Mutations of the rearranged during transfection (RET) kinase are frequently reported in cancer, which make it as an attractive therapeutic target. Herein, we discovered a series of N-trisubstituted pyrimidine derivatives as potent inhibitors for both wild-type (weight) RET and RETV804M, which is a resistant mutant for several FDA-approved inhibitors. The X-ray structure of a representative inhibitor with RET revealed that the compound binds in a unique pose that bifurcates beneath the P-loop and confirmed the compound as a type I inhibitor. Through the structure-activity relationship (SAR) study, compound 20 (I) was identified as a lead compound, showing potent inhibition of both RET and RETV804M. Addnl., compound 20 displayed potent antiproliferative activity of CCDC6-RET-driven LC-2/ad cells. Anal. of RET phosphorylation indicated that biol. activity was mediated by RET inhibition. Collectively, N-trisubstituted pyrimidine derivatives could serve as scaffolds for the discovery and development of potent inhibitors of type I RET and its gatekeeper mutant for the treatment of RET-driven cancers.

103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, SDS of cas: 103-76-4

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Zhang, Dapeng team published research on Journal of the American Chemical Society in 2022 | 103-76-4

103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, Application In Synthesis of 103-76-4

Piperazine is an organic compound that consists of a six-membered ring containing two nitrogen atoms at opposite positions in the ring. 103-76-4, formula is C6H14N2O, Name is N-(2-Hydroxyethyl)piperazine. Piperazine exists as small alkaline deliquescent crystals with a saline taste. Application In Synthesis of 103-76-4.

Zhang, Dapeng;Atochina-Vasserman, Elena N.;Lu, Juncheng;Maurya, Devendra S.;Xiao, Qi;Liu, Matthew;Adamson, Jasper;Ona, Nathan;Reagan, Erin K.;Ni, Houping;Weissman, Drew;Percec, Virgil research published 《 The Unexpected Importance of the Primary Structure of the Hydrophobic Part of One-Component Ionizable Amphiphilic Janus Dendrimers in Targeted mRNA Delivery Activity》, the research content is summarized as follows. Viral and synthetic vectors for delivery of nucleic acids impacted genetic nanomedicine by aiding the rapid development of the extraordinarily efficient Covid-19 vaccines. Access to targeted delivery of nucleic acids is expected to expand the field of nanomedicine beyond most expectations. Both viral and synthetic vectors have advantages and disadvantages. The major advantage of the synthetic vectors is their unlimited synthetic capability. The four-component lipid nanoparticles (LNPs) are the leading nonviral vector for mRNA used by Pfizer and Moderna in Covid-19 vaccines. Their synthetic capacity inspired us to develop a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA. The first experiments on IAJDs provided, through a rational-library design combined with orthogonal-modular accelerated synthesis and sequence control in their hydrophilic part, some of the most active synthetic vectors for the delivery of mRNA to lung. The second experiments employed a similar strategy, generating, by a less complex hydrophilic structure, a library of IAJDs targeting spleen, liver, and lung. Here, we report preliminary studies designing the hydrophobic region of IAJDs by using dissimilar alkyl lengths and demonstrate the unexpectedly important role of the primary structure of the hydrophobic part of IAJDs by increasing up to 90.2-fold the activity of targeted delivery of mRNA to spleen, lymph nodes, liver, and lung. The principles of the design strategy reported here and in previous publications indicate that IAJDs could have a profound impact on the future of genetic nanomedicine.

103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, Application In Synthesis of 103-76-4

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Zhang, Dapeng team published research on Journal of the American Chemical Society in 2021 | 103-76-4

Recommanded Product: N-(2-Hydroxyethyl)piperazine, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

Piperazines were originally named because of their chemical similarity with piperidine, part of the structure of piperine in the black pepper plant (Piper nigrum). 103-76-4, formula is C6H14N2O, Name is N-(2-Hydroxyethyl)piperazine. The -az- infix added to “piperazine” refers to the extra nitrogen atom, compared to piperidine. It is important to note, however, that piperazines are not derived from plants in the Piper genus. Recommanded Product: N-(2-Hydroxyethyl)piperazine.

Zhang, Dapeng;Atochina-Vasserman, Elena N.;Maurya, Devendra S.;Liu, Matthew;Xiao, Qi;Lu, Juncheng;Lauri, George;Ona, Nathan;Reagan, Erin K.;Ni, Houping;Weissman, Drew;Percec, Virgil research published 《 Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers》, the research content is summarized as follows. Targeted and efficient delivery of nucleic acids with viral and synthetic vectors is the key step of genetic nanomedicine. The four-component lipid nanoparticle synthetic delivery systems consisting of ionizable lipids, phospholipids, cholesterol, and a PEG-conjugated lipid, assembled by microfluidic or T-tube technol., have been extraordinarily successful for delivery of mRNA to provide Covid-19 vaccines. Recently, we reported a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) synthetic delivery system for mRNA relying on amphiphilic Janus dendrimers and glycodendrimers developed in our laboratory Amphiphilic Janus dendrimers consist of functional hydrophilic dendrons conjugated to hydrophobic dendrons. Co-assembly of IAJDs with mRNA into dendrimersome nanoparticles (DNPs) occurs by simple injection in acetate buffer, rather than by microfluidic devices, and provides a very efficient system for delivery of mRNA to lung. Here we report the replacement of most of the hydrophilic fragment of the dendron from IAJDs, maintaining only its ionizable amine, while changing its interconnecting group to the hydrophobic dendron from amide to ester. The resulting IAJDs demonstrated that protonated ionizable amines play dual roles of hydrophilic fragment and binding ligand for mRNA, changing delivery from lung to spleen and/or liver. Replacing the interconnecting ester with the amide switched the delivery back to lung. Delivery predominantly to liver is favored by pairs of odd and even alkyl groups in the hydrophobic dendron. This simple structural change transformed the targeted delivery of mRNA mediated with IAJDs, from lung to liver and spleen, and expands the utility of DNPs from therapeutics to vaccines.

Recommanded Product: N-(2-Hydroxyethyl)piperazine, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Zhang, Bengui team published research on Polymers (Basel, Switzerland) in 2022 | 103-76-4

Application In Synthesis of 103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

Piperazine is an organic compound that consists of a six-membered ring containing two nitrogen atoms at opposite positions in the ring. 103-76-4, formula is C6H14N2O, Name is N-(2-Hydroxyethyl)piperazine. Piperazine exists as small alkaline deliquescent crystals with a saline taste. Application In Synthesis of 103-76-4.

Zhang, Bengui;Zhang, Xueting;Liu, Qian;Fu, Yanshi;Yang, Zhirong;Zhang, Enlei;Wang, Kangjun;Wang, Guosheng;Zhang, Zhigang;Zhang, Shouhai research published 《 Robust Adamantane-Based Membranes with Enhanced Conductivity for Vanadium Flow Battery Application》, the research content is summarized as follows. Membranes with high conductivity, high selectivity, and high stability are urgently needed for high-power-d. vanadium flow batteries (VFBs). Enhancing membrane conductivity presents many challenges, often resulting in sacrificing membrane selectivity and mech. strength. To overcome this, new robust adamantane-based membranes with enhanced conductivity are constructed for VFB. Low-content basic piperazine (IEC = 0.78 mmol g-1) and hydrophilic hydroxyl groups are introduced into highly rigid, hydrophobic adamantane containing poly(aryl ether ketone) backbone (PAPEK) and then selectively swelled to induce microphase separation and form ion transport pathways. The highly rigid and hydrophobic PAPEK exhibits high swelling resistance and provides the membranes with slight swelling, high selectivity, and high mech. strength. The selective swelling temperature has a significant influence on the areal resistance of the resulting membrane, e.g., the PAPEK-130 membrane, when selectively swelled at 130 °C, has low areal resistance (0.22 Ω•cm2), which is approx. two-fifths that of the PAEKK-60 membrane (treated at 60 °C, 0.57 Ω•cm2). Consequently, the resulting PAPEK membranes exhibit low swelling, high selectivity, and low areal resistance, with the VFB constructed with a PAPEK-90 membrane exhibiting excellent energy efficiency (91.7%, at 80 mA•cm-2, and 80.0% at 240 mA•cm-2) and stable cycling performance for 2000 cycles.

Application In Synthesis of 103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Yu, Jiang team published research on European Journal of Medicinal Chemistry in 2022 | 103-76-4

103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, Recommanded Product: N-(2-Hydroxyethyl)piperazine

Piperazines were originally named because of their chemical similarity with piperidine, part of the structure of piperine in the black pepper plant (Piper nigrum). 103-76-4, formula is C6H14N2O, Name is N-(2-Hydroxyethyl)piperazine. The -az- infix added to “piperazine” refers to the extra nitrogen atom, compared to piperidine. It is important to note, however, that piperazines are not derived from plants in the Piper genus. Recommanded Product: N-(2-Hydroxyethyl)piperazine.

Yu, Jiang;Luo, Lingling;Hu, Tong;Cui, Yating;Sun, Xiao;Gou, Wenfeng;Hou, Wenbin;Li, Yiliang;Sun, Tiemin research published 《 Structure-based design, synthesis, and evaluation of inhibitors with high selectivity for PARP-1 over PARP-2》, the research content is summarized as follows. The poly (ADP-ribose) polymerase (PARP) inhibitors play a crucial role in cancer therapy. However, most approved PARP inhibitors have lower selectivity to PARP-1 than to PARP-2, so they will inevitably have side effects. Based on the different catalytic domains of PARP-1 and PARP-2, we developed a strategy to design and synthesize highly selective PARP-1 inhibitors. A few selected compounds (labeled Y17, Y29, Y31 and Y49) showed excellent PARP-1 inhibition, and their IC50 values were 0.61, 0.66, 0.41 and 0.96 nM, resp. Then, Y49 (PARP-1 IC50 = 0.96 nM, PARP-2 IC50 = 61.90 nM, selectivity PARP-2/PARP-1 = 64.5) was proved to be the most selective inhibitor of PARP-1. Compounds Y29 and Y49 showed stronger inhibitory effect on proliferation in BRCA1 mutant MX-1 cells than in other cancer cells. In the MDA-MB-436 xenotransplantation model, Y49 was well tolerated and showed remarkable single dose activity. The design strategy proposed in this paper is of far-reaching significance for the further construction of the next generation of selective PARP-1 inhibitors.

103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, Recommanded Product: N-(2-Hydroxyethyl)piperazine

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Yin, Yong team published research on Bioorganic Chemistry in 2019 | 103-76-4

Safety of N-(2-Hydroxyethyl)piperazine, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

Piperazine is an organic compound that consists of a six-membered ring containing two nitrogen atoms at opposite positions in the ring. 103-76-4, formula is C6H14N2O, Name is N-(2-Hydroxyethyl)piperazine. Piperazine exists as small alkaline deliquescent crystals with a saline taste. Safety of N-(2-Hydroxyethyl)piperazine.

Yin, Yong;Zhou, Yang;Sha, Shao;Wu, Xun;Wang, She-Feng;Qiao, Fang;Song, Zhong-Cheng;Zhu, Hai-Liang research published 《 Development of novel chromeno[4,3-c]pyrazol-4(2H)-one derivates containing piperazine as inhibitors of PI3Kα》, the research content is summarized as follows. A series of novel chromeno[4,3-c]pyrazol-4(2H)-one derivates I [R = piperidin-1-ylmethyl, piperazin-1-ylmethyl, 4-benzhydrylpiperazin-1-ylmethyl, etc.] containing piperazine were synthesized. They were evaluated for their PI3Kα wild-type and H1047R mutant inhibitory activities and anticancer effects in-vitro. Most of these compounds displayed the potential antiproliferative activities against four cancer cell lines (HCT-116, A549, Huh7 and HL60). Among them, compound I [R = 4-benzhydrylpiperazin-1-ylmethyl] revealed the remarkable antiproliferative activity and was selected for further biol. evaluation. Compound I [R = 4-benzhydrylpiperazin-1-ylmethyl] displayed the potent activity against both PI3Kα wild-type and H1047R mutant, and a certain degree of selectivity for PI3Kα over PI3Kβ, γ and δ, and meanwhile it can remarkable down-regulate the phosphorylation of Akt. In addition, compound I [R = 4-benzhydrylpiperazin-1-ylmethyl] was found to induce cell apoptosis via upregulation of Bax and cleaved-caspase 3/9, and downregulation of Bcl-2. The above results suggested that compound I [R = 4-benzhydrylpiperazin-1-ylmethyl] could be considered as a promising PI3Kα inhibitor.

Safety of N-(2-Hydroxyethyl)piperazine, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Yang, Jie team published research on European Journal of Medicinal Chemistry in 2020 | 103-76-4

Recommanded Product: N-(2-Hydroxyethyl)piperazine, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

Piperazine is an organic compound that consists of a six-membered ring containing two nitrogen atoms at opposite positions in the ring. 103-76-4, formula is C6H14N2O, Name is N-(2-Hydroxyethyl)piperazine. Piperazine exists as small alkaline deliquescent crystals with a saline taste. Recommanded Product: N-(2-Hydroxyethyl)piperazine.

Yang, Jie;Cao, Chaoguo;Luo, Dan;Lan, Suke;Luo, Meng;Shan, Huifang;Ma, Xinyu;Liu, Yuanyuan;Yu, Su;Zhong, Xinxin;Li, Rui research published 《 Discovery of 4-(3,5-dimethoxy-4-(((4-methoxyphenethyl)amino)methyl)phenoxy)-N-phenylaniline as a novel c-myc inhibitor against colorectal cancer in vitro and in vivo》, the research content is summarized as follows. Proto-oncogene c-Myc plays an essential role in the development of colorectal cancer (CRC), since downregulation of c-Myc inhibits intestinal polyposis, which is the most cardinal pathol. change in the development of CRC. Herein, a series of novel phenoxy-N-phenylaniline derivatives I (R1 = R2 = R3 = R4 = H; R1 = R2 = R4 = OMe; R5 = N(Me)2, NHCH2C6H5, NH(CH2)2C6H5, etc.) and II (R = 4-MeOC6H4(CH2)2NH, 3-MeOC6H4(CH2)2NH, 2-MeOC6H4(CH2)2NH, 4-MeOC6H4(CH2)3NH) were designed and synthesized. The cytotoxicity activities of all the derivatives were measured by MTT assay in different colon cancer cells, compound II (R = 4-MeOC6H4(CH2)2NH) was discovered, as the lead compound with excellent cytotoxicity activity of IC50 = 0.32μM, IC50 = 0.51μM, in HT29 and HCT 15 cells, resp. Compound II (R = 4-MeOC6H4(CH2)2NH) had a good inhibitory activity of c-Myc/MAX dimerization and DNA binding. Besides, compound II (R = 4-MeOC6H4(CH2)2NH) could effectively induce apoptosis and induced G2/M arrest in low concentration and G0/G1 arrest in high concentration to prevent the proliferation and differentiation in colon cancer cells. Western blot anal. confirmed the compound II (R = 4-MeOC6H4(CH2)2NH) strongly down-regulated expression of c-Myc. Furthermore, during 30 days treatment compound II (R = 4-MeOC6H4(CH2)2NH) exhibited excellent efficacy in HT29 tumor xenograft model without causing significant weight loss and toxicity. Consequently, compound II (R = 4-MeOC6H4(CH2)2NH) could be a promising drug candidate for CRC therapy.

Recommanded Product: N-(2-Hydroxyethyl)piperazine, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Yan, Longjia team published research on Youji Huaxue in 2020 | 103-76-4

Electric Literature of 103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

Piperazines were originally named because of their chemical similarity with piperidine, part of the structure of piperine in the black pepper plant (Piper nigrum). 103-76-4, formula is C6H14N2O, Name is N-(2-Hydroxyethyl)piperazine. The -az- infix added to “piperazine” refers to the extra nitrogen atom, compared to piperidine. It is important to note, however, that piperazines are not derived from plants in the Piper genus. Electric Literature of 103-76-4.

Yan, Longjia;Li, Yongliang;Deng, Minggao;Chen, Anchao;Du, Zhiyun;Dong, Changzhi;Chen, Huixiong research published 《 Design, synthesis and biological activities of compounds containing 1,3,4-oxadiazole or 1,3,4-thiadiazole》, the research content is summarized as follows. In order to find new anti-tumor drugs, a series of novel 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives were designed and synthesized. The target compounds were evaluated for antitumor activity in vitro on four human cancer cell lines including B-16 (skin melanoma cells), PC-3 (human prostate cancer cells), U87 (human primary glioblastoma cells) and A549 (human non-small cell lung cancer cells). The results displayed that some of the compounds had good activities, especially, 5-((6-(4-(2-hydroxyethyl) piperazin-1-yl)-2-methylpyrimidin-4-yl) amino)-N-(2-methoxyphenyl)-1,3,4-thiadiazole-2-carboxamide (8b) and 5-((6-(4-(2-hydroxyethyl) piperazin-1-yl)-2-methylpyrimidin-4-yl) amino)-N-(4-methoxyphenyl)-1,3,4-thiadiazole-2-carboxamide (8c) showed high antitumor activities against four cancer cell lines, which was better than dasatinib. These compounds were further studied for their possible target of tumor suppression.

Electric Literature of 103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Yadav, Lalit team published research on Journal of Organic Chemistry in 2020 | 103-76-4

Application In Synthesis of 103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

The piperazines are a broad class of chemical compounds, many with important pharmacological properties, which contain a core piperazine functional group. 103-76-4, formula is C6H14N2O, Name is N-(2-Hydroxyethyl)piperazine. A form in which piperazine is commonly available industrially is as the hexahydrate, C4H10N2. 6H2O, which melts at 44 °C and boils at 125–130 °C. Application In Synthesis of 103-76-4.

Yadav, Lalit;Tiwari, Mohit K.;Shyamlal, Bharti Rajesh Kumar;Chaudhary, Sandeep research published 《 Organocatalyst in Direct C(sp2)-H Arylation of Unactivated Arenes: [1-(2-Hydroxyethyl)-piperazine]-Catalyzed Inter-/Intra-molecular C-H Bond Activation》, the research content is summarized as follows. In the presence of 10 mol% 1-piperazineethanol, aryl iodides and bromides underwent arylation with benzene mediated by KOt-Bu to yield biaryls. N-Aryl 2-bromobenzamides underwent cyclization mediated by KOt-Bu in the presence of 40 mol% 1-piperazineethanol and 40 mol% 4-dimethylaminopyridine in mesitylene to yield phenanthridinones. Study of the reaction mechanism using kinetics and kinetic isotope effects and inhibition studies are consistent with the formation of aryl radical anions and a single electron transfer mechanism.

Application In Synthesis of 103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics

Xie, Lan team published research on ACS Medicinal Chemistry Letters in 2021 | 103-76-4

Application In Synthesis of 103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

Piperazine is an organic compound that consists of a six-membered ring containing two nitrogen atoms at opposite positions in the ring. 103-76-4, formula is C6H14N2O, Name is N-(2-Hydroxyethyl)piperazine. Piperazine exists as small alkaline deliquescent crystals with a saline taste. Application In Synthesis of 103-76-4.

Xie, Lan;Goto, Masuo;Chen, Xiaoyan;Morris-Natschke, Susan L.;Lee, Kuo-Hsiung research published 《 Lead Optimization: Synthesis and Biological Evaluation of PBT-1 Derivatives as Novel Antitumor Agents》, the research content is summarized as follows. Phenanthrene-based tylophorine-1 (PBT-1) I (R = CH2OH, NHBoc, Me, SO2Me, etc.; R1 = H, OMe; R2 = OH, OMe, OAc, prop-2-yn-1-yloxidanyl, etc.; X = CH, N) and II (R3 = H, OMe; R4 = H, OMe) was identified previously as a lead compound in an anticancer drug discovery effort based on natural Tylophora alkaloids. An expanded structural optimization using a new more efficient synthetic route provided 14 PBT-derivatives I and II. Eleven compounds displayed obvious antiproliferative activities in cellular assays (GI50 0.55-9.32μM). The most potent compounds I (R = CH2OH, R1 = H, R2 = OH, X = CH; R = NHBoc, R1 = H, R2 = OH, X = CH; R = NH2, R1 = H, R2 = OH, X = CH) (GI50 ; 1μM) contained a 7-hydroxy group on the phenanthrene B-ring in addition to a pendant piperidine E-ring with different 4-substituents. While I (R = NH2, R1 = H, R2 = OH, X = CH) with NH2 as the piperidine substituent was at least 4-fold more potent against triple-neg. breast cancer MDA-MB-231 than estrogen-responsible breast cancer MCF-7 cell growth. In further biol. evaluations, the new active compounds induced cell cycle accumulation in late S and G2/M phase without interfering with microtubule formation or cell morphol. These results on the optimization of the B- and E-rings of PBT-1 I and II should benefit the further development of novel antitumor agents.

Application In Synthesis of 103-76-4, 1-(2-Hydroxyethyl)piperazine is a useful research compound. Its molecular formula is C6H14N2O and its molecular weight is 130.19 g/mol. The purity is usually 95%.
1-(2-Hydroxyethyl)piperazine is a chemical solvent that is used for the absorption of amines and other compounds. It has been shown to have a high affinity for acidic substances, which may be due to its ability to form hydrogen bonds with them. 1-(2-Hydroxyethyl)piperazine is also used in sample preparation for the analysis of amines and other compounds in fruit extracts. The solubility of 1-(2-Hydroxyethyl)piperazine depends on the experimental conditions, including pH, temperature, and pressure. FT-IR spectroscopy has been used to measure the vibrational modes of 1-(2-Hydroxyethyl)piperazine molecules. The IR spectrum revealed that this compound contains a hydroxyl group and two fatty acid chains with one or more hydroxyl groups at their terminal end. The nmr spectrum showed that 1-(2-Hydroxyethyl)piperazine contains an NH proton as well as, 103-76-4.

Referemce:
Piperazine – Wikipedia,
Piperazines – an overview | ScienceDirect Topics