Analyzing the synthesis route of 74879-18-8

As the paragraph descriping shows that 74879-18-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.74879-18-8,(S)-(+)-2-Methylpiperazine,as a common compound, the synthetic route is as follows.,74879-18-8

Step l; 3-(5)-Methyl-l-(5-trifluoromethyl-pyridin-2-yl)-piperazine:; 2-Bromo-5-trifluoromethyl-pyridine (1.06 g, 4.69 mmol), (5)-2-methylpiperazine (1.03 g, 10.28 mmol) and triethylamine (1.5 mL, 10.76 mmol) were stirred in toluene (10 mL) at 110 0C for 26 h. The reaction was cooled to room temperature, diluted with ethyl acetate (150 mL) and washed with water and brine. The organic layer was dried (MgSC>4), filtered and concentrated. The crude mixture was purified by automated silica gel flash column chromatography (gradient eluent 0-20% MeOH/dichloromethane) to afford 3-(S)-methyl-l-(5-trifluoromethyI-pyridin-2-yl)- piperazine (926 mg, 81 %) as a yellow solid. 1H NMR (400 MHz, CDCl3) delta 8.38 (s, IH), 7.62 (dd, IH), 7.63 (d, IH), 4.29-4.20 (m, 2H), 3.16-3.12 (m, IH), 3.02-2.85 (m, 3H), 2.64-2.52 (m, 2H), 1.18 (d, 3H).

As the paragraph descriping shows that 74879-18-8 is playing an increasingly important role.

Reference£º
Patent; KALYSPSYS, INC.; NOBLE, Stewart A.; OSHIRO, Guy; MALECHA, James W.; ZHAO, Cunxiang; ROBINSON, Carmen K. M.; DURON, Sergio G.; SERTIC, Michael; LINDSTROM, Andrew; SHIAU, Andrew; BAYNE, Christopher; KAHRAMAN, Mehmet; LOU, Boliang; GOVEK, Steven; WO2006/55187; (2006); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics