With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.109-07-9,2-Methylpiperazine,as a common compound, the synthetic route is as follows.
Example 9 In a 100 ml four-neck flask, 5.06 g (= 0.0505 mole) of racemic 2-methylpiperazine was placed, and 50.00 g of 1-butanol (water content 0.05 wt%) was added for dissolution. After cooling down to 0C, 10.91 g (= 0.0500 mole, 0.99 molar time) of di-tert-butyl dicarbonate was added dropwise with the liquid temperature kept in a range from 5 to 15C. Then, stirring was carried out at 5 to 10C for 2 hours. The reaction solution was analyzed, and as a result, the conversion of 2-methylpiperazine was 94.7%, while the selectivity of 1-tert-butoxycarbonyl-3-methylpiperazine was 89.3% (reaction yield 84.6%).Example 10 An experiment was carried out as described for Example 9, except that the amount of di-tert-butyl dicarbonate used was changed to 11.97 g (= 0.0548 mole, 1.10 molar times). As a result, the conversion of 2-methylpiperazine was 100.0%, and the selectivity of 1-tert-butoxycarbonyl-3-methylpiperazine was 81.5% (reaction yield 81.5%)., 109-07-9
109-07-9 2-Methylpiperazine 66057, apiperazines compound, is more and more widely used in various fields.
Reference£º
Patent; Toray Fine Chemicals Co., Ltd.; EP1548010; (2005); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics