With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1235865-77-6,2-((1H-Pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-((4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2-yl)methyl)piperazin-1-yl)benzoic acid,as a common compound, the synthetic route is as follows.
Solution preparation prior to reaction: 10% Acetic Acid:Acetic Acid (37 mL) in water (333 g); 5% NaHCO3:NaHCO3 (9 g) in water (176 g); 5% NaCl:NaCl (9 g) in water (176 g). Compound (N) (13.5 g), DMAP (10.5 g), EDAC (10.7 g) and dichloromethane (300 mL) were combined in a suitable reactor and agitated at 25 C. In a second suitable reactor was charged the Acid (Compound (L), 25 g), Et3N (8.7 g) and dichloromethane (120 mL). The resulting Acid (Compound (L)) solution was slowly charged to the initial suspension of Compound (N) and agitated until reaction completion. N,N-dimethylethylenediamine (9.4 g) was then charged to the reaction mixture with continued agitation. The reaction mixture was warmed to 35 C. and washed with 10% Acetic acid solution (185 mL) twice. The lower organic layer was diluted with more dichloromethane (75 mL) and methanol (12.5 mL). The organic, product layer was then washed with 5% NaHCO3 solution (185 mL) and then washed with 5% NaCl solution (185 mL) at 35 C. The lower, organic layer was separated and then concentrated to 8 vol (256 mL) diluted with methanol (26 mL) and warmed to 38 C. Ethyl Acetate (230 mL) was slowly charged. The resulting suspension was slowly cooled to 10 C. and then filtered. The wet cake was washed twice with a 1:1 mix of dichloromethane and ethyl acetate (2 vol, 64 mL). After drying the wet cake at 90 C., 32 g (84%) of Compound (I) was isolated. 1H NMR (DMSO-d6): delta 0.90 (s, 6H), 1.24 (m, 2H), 1.36 (t, J=6.4 Hz, 2H), 1.60 (m, 2H), 1.87 (m, 1H), 1.93 (s, br, 2H), 2.12 (m, 2H), 2.19 (m, 4H), 2.74 (s, br, 2H), 3.06 (m, 4H), 3.26 (m, 4H), 3.83 (m, 2H), 6.17 (d, J=2.1 Hz, 1H), 6.37 (dd, J=3.4, 1.9 Hz, 1H), 6.66 (dd, J=9.1, 2.2 Hz, 1H), 7.01 (m, 2H), 7.31 (m, 2H), 7.48 (m, 3H), 7.78 (dd, J=9.3, 2.3 Hz, 1H), 8.02 (d, J=2.61 Hz, 1H), 8.54 (d, J=2.33 Hz, 1H), 8.58 (t, J=5.9 Hz, 1H, NH), 11.65 (m, 1H).
1235865-77-6, 1235865-77-6 2-((1H-Pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-((4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1′-biphenyl]-2-yl)methyl)piperazin-1-yl)benzoic acid 66713100, apiperazines compound, is more and more widely used in various.
Reference£º
Patent; ABBVIE INC.; Chan, Vincent S.; Christesen, Alan C.; Grieme, Timothy A.; Ku, Yi-Yin; Mulhern, Mathew M.; Pu, Yu-Ming M.; US2014/275540; (2014); A1;,
Piperazine – Wikipedia
Piperazines – an overview | ScienceDirect Topics